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On the Divergence of Lagrange Interpolation to Ixl
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It is a classical result of Bernstein that the sequence of Lagrange interpolation
polynomials to Ixl at equally spaced nodes in [ -I, I] diverges everywhere, except
at zero and the end-points. In the present paper we show that the case of equally
spaced nodes is not an exceptional one in this sense. Namely, we prove that the
divergence everywhere in 0 < Ixl < I of the Lagrange interpolation to Ixl takes
place for a broad family of nodes, including in particular the Newman nodes, which
are known to be very efficient for rational interpolation. r 1995 Academic Pre>s. Inc.

I. INTRODUCTION

Let X={Xi" I}, 12=0, 1,2, ... , O~k~12 be an infinite triangular matrix,
where

12 = 0, 1, 2, ...

and denote by C[ -I, I] the Banach space of continuous functions on
[ - I, I] equipped with the uniform norm. To each f E C[ - I, I] there
corresponds a unique interpolation polynomial LII(f; X; x) of degree at
most 12 coinciding with f( x) at the nodes of the 12 th row of X. The most
important problem in interpolation theory is to characterize under what
conditions on f and X the sequence {LIl(j; X; x)}, n = 0, I, 2, ... , converges
to f(x).
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The first negative result is due to Faber [3], who proved that for any
matrix X there is a function IE C[ - I, I] such that

lim III -Ln(f; X)II #0.

A direct consequence of this result is the pointwise divergence of
{Ln(f; X; x)} at least at one point. The result of Faber was reinforced by
Erdos and Vertesi [2], who showed that for any X there is a function
IE C[ - 1, I] such that the divergence of the interpolating process takes
place almost everylvhere on [ - I, I].

It should be pointed out that the above mentioned negative results are
valid for "bad," artificial functions, the construction of which is a difficult
process. A striking contrast is an extremely simple example due to
Bernstein [I], who proved that the sequence of interpolation polynomials
to Ixl at equally spaced nodes in [ -1,1] diverges everywhere, except at
zero and the end-points. On the other hand, it was shown by Newman [5]
that rational interpolation to Ixl is much more favorable. By choosing a
special matrix of interpolation nodes (which will be referred to as the
Newman nodes) defined by

where

N = ( - I, - a, ..., - an - I, 0, a" - I, ... , a, I),

a =a(n) =exp( -l/~),

n = 1, 2, ...,

Newman proved that the sequence of rational interpolants to Ixl at the
N -nodes converges uniformly with exponential rate.

Motivated by the above mentioned results of Bernstein and Newman, in
the present paper we consider the behavior of polynomial interpolation
to Ixl at a family of nodes, which includes the N-nodes. We prove that
the corresponding sequence of polynomial interpolants to Ixl diverges
everywhere except at zero and the end-points. This result demonstrates that
the divergence phenomenon for Ixl is rather general, and is linked to the
nature of the polynomial interpolation process.

2. RESULTS

Let g(x) = Ixl and let P be a family of nodal matrices of the form

P=P(a)={-I, -a, ... , _an-1,0,an-1, ...,a, 1}, n = 1,2, ... (1)

depending on the parameter a = a(n), 0 < a < I (here and in the sequel,
when there is no reason for confusion, we omit the explicit dependence of
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a on n). Note that for a = exp( -I/fi), P(a) coincides with the matrix N
of Newman nodes. Our goal is to prove that under certain conditions on
a(n) the corresponding sequence of interpolating polynomials L 2,,( g; P; x)
will diverge everywhere in 0 < Ixl < 1. More precisely, we prove the
following

THEOREM 2.1. Let P be the family of nodal matrices of the form (I) with

a(n) = exp( - I/r(n)),

where r( n) satisfies the conditions

(2)

lim r(n) = w;
11- X

r( n + I ) ~ r( n), n = 1,2, ... , (3)

lim [r(n+I)-r(n)]=O,
11-<X

. r(n) log[r(n)]
11m 0.

n - 'X' 11

Then for an}' x E ( - I, 1), x#-O

lim sup L 2,,( Ixl; P; x) = oc.
n ... x

Remark I. Condition (3) yields

(4)

(5 )

(6)

a(n) -+ 1, n -+ oc, (3')

while condition (4) implies, in view of the Schtolz theorem [4], that
r( n) = o( n), from which it follows that

[ a( n) ]" -+ 0, n- w. (4')

The asymptotic relations (3') and (4') together guarantee that the set of
nodal points (1) is dense in [ -1,1].

It turns out that to prove the divergence we need some additional condi
tions to ensure that the rate of the convergence in (4') is faster than that
of (3'). As we will see in the process of the proof, condition (5) will be
sufficient for this purpose. Note that although this condition is a bit more
than we actually need, we find it convenient to formulate all the conditions
for the divergence in terms of the sequence {r(n)}.

Remark 2. One can easily verify that for r(n) = /la, 0 < IX < I, conditions
(3 )-( 5) are fulfilled. Therefore, the divergence property of L 2,,( Ixl; P; x)
takes place for a broad family of nodes, including in particular the
Newman nodes.



130 BRUTMAN AND PASSOW

Proof We restrict ourselves to x E (-1,0) (the case where 0 < x < 1 is
analogous) and introduce the function

f(x) = C', -1 ~x ~ 0,

O~x~l.

Since g(x) = 2f( x) - x, it suffices to prove divergence for the function f( x).
Newton's representation of the interpolating polynomial yields

L 211 (f; P; x) = f[ -1, -a, ... , _a"-I, 0, a"-I] Q,,(x)

+ "f[ 1 " -- I 0 " - 1 II - k]~ -, - G, ... , - a " a , ... , a
k ~2

x QII(X)(X - a,,--I) ... (x _a"-k + 1),

where f[ .. , ] is the standard divided difference notation and

'1- l

Q,,(x)=x n (x+aJ ).
J~O

First we claim that

{ f[ I " lOa" - I a" - k] }sgn -, -a, ... , -a --" , ... ,

= ( - 1 )k - I, k = 1, 2, ..., n.

(7)

(8)

Indeed, it is clear that for the function f( x) all the consecutive divided
differences of the second order equal zero, except f[ -a" - I, 0, a" - I],

which is positive. Therefore the vector, consisting of the consecutive
divided differences of the third order (namely {I[ -1, -a, _a 2

, _a'],
f[ -a, _a2

, -a" _a4
], .. " /[a', a\ a, I]}) has the following sign pattern:

{0, 0, ... , 0, +, -, 0, ..., 0, O}. Continuing in the same manner we arrive at
the conclusion that the consecutive divided differences of the order (n + I)
have alternating signs, namely

{ j .[ k - I k II - I 0 " - I ,,- k ] }sgn. -a , -a " .. , -a "a , ...,a

=( -I )k.l, k = 1, 2, ..., n. (9)

It remains to note that the sign alternation property of the divided
differences in (9) guarantees the same sign pattern for the corresponding
divided differences in (8).

Thus, all the summands on the right-hand side of (7) have the same sign
and therefore the absolute value of L 2,,(f; P; x) is greater than the absolute
value of the first summand, that is,
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Further, by applying the well-known formula for the divided difference

n ! n

f[xo,xj, ... ,x,,] = I f(xk)/ fl (xk-x),
k~O i j~O

j,.k

we find

II-I ,,-I 1f[-l, -a, ..., -a ,O,a ]=--------
2a"- 1n~:~ (a"-I +ak)

> 2"a"(,,-1112' ( 11 )

Now let us study the behavior of the polynomial factor QII(X). To this
end we fix x E ( -1, 0) and assume that there is an index k, depending on
n such that

k = 0, I, ... , n - 2. (12)

Note that since a" -> °it follows that x < - a"- 1 for n sufficiently large and
therefore the case - a" - I ~ X < °may be excluded from our consideration.
It follows from (12) and (2) that

k ~ r( n )[ -Iog( - x)] < k + I,

or, after the substitution x = - exp( - t), t E (0, IX)

k~t,.(n)<k+l.

Thus,

k=[tr(n)],

where [ ... ] is the integer part notation.
Now we can estimate IQII(x)! from below as

(13 )

IQ,,(x)1 ~(x+(/)( -ak+l-x) rak+ 1j~~:2 (ak+l-aj) :[I~ (aj-ak)J

= (x + ak
)( - a k + 1 - x)

(14)
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Taking into account that I - aJ ~ I - a, j = I, 2, ... , we have

k n-2-kn (I-aJ ) n (I-aJ»(I-a)"-2.
J= I J= I

Combining (10), (II), (14), and (15) yields

where

Inequality (16) may be rewritten as

(15)

(16)

(17)

To complete the proof of the divergence it will be sufficient to show that
BII -> C/] as n -> 00, while there is a subsequence of indices n, such that for
some a> 0, gll( x) ~ a. To this end we make use of the conditions (3 )-( 5).

Note first that conditions (3) and (5) yield

aell

lim --=0,
11-4 'x I-a

(18 )

where e is an arbitrary posItive constant and a=a(n)=exp(-Ilr(n)).
Indeed, it follows from (5) that

l en Jlim log r(n) - -- = - ce,
II ~ 'x r(n)

which is equivalent to

lim ~=O.
II _ ex, eOljrtn)

On the other hand

a Cfl

lim
fJ_ ,x' 1-a

. e- cn/rfJJ
) • r(n)

hm 1 elir(,,) = hm, eCIl;'r(II)'
11_'l: - n--~'x

thus proving (18). In the following we will use (18) with (' = 1/8.
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Further (13) yields that k = o( n) and therefore in the sequel we will
assume that n is sufficiently large, so that

(19)

Now, since v(n,k)=f1(n,k)-2k is a monotone decreasing function ofk in
the interval (19) we have

and therefore

a=a(n),

[
I-a J"

B" > 2a l" - IOl/S .

Combining (18) and (20) yields

lim B" = oc.
ll __ X

It remains to show that q,,(x) which was defined by

(x + ak )( - ak + I - x)
q/l(x) = (a k _a k + 1 )2 ' k=k(n),

(20)

(21 )

is bounded away from zero infinitely often. To this end it suffices to prove
that

x + [a(n)]kl/l l

has a limiting point, different from zero.
The proof of this fact is based on the following lemma.

(22)

LEMMA 1. Let r( n), n = 1, 2, ..., be a sequence, satisfying conditions (3),
(4) (~r the Theorem. Let t E (0, oc) be fixed and define the new sequence b( n),

n = 1,2, ... , by

b( n) = { tr( n) }. n = 1, 2, ... , (23)

where { ... } is the fractional part notation.
Then every point in (0, I) is an accumulation point of the sequence b(n).

Pro4 For the proof it suffices to show that for any interval [:x, fJ],
O<:x < fJ < 1, there exists an element of the sequence b(n), belonging to
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[c<, fJ]. To this end note first that condition (4) guarantees that there exists
an n l such that

fJ-c<
r(n + I) - r(n) <--,

t
(24)

Let N = [tr( n1)] + I (here [ . , . ] is the integer part notation) and suppose
that p is the first index such that

[tr(p)] = N,

while q( q > p) is an index (which exists in view of (3)), such that

[tr(q)] = N + 1.

Suppose that {tr(k)} ¢ [c<, fJ], k = p, p + I, ..., q. Then there exists an index
jE {p, P + I, .. " q -l} such that

tr(j) < N + c<,

tr(j + I) > N + fJ,

and therefore

fJ-c<
r(j + I) - r(j) > -

t
(25)

contradicting (24) and thus proving the lemma,

Returning to the proof of the theorem we can suppose in view of the
lemma and taking into account (13) that there is a subsequence of indices
{nj such that

lim [tr(n)-k(n)] =L,
j- oc

Then since x = - e - t and a = e -1)r(n) we have

L E (0, 1).

This completes the proof of the theorem.
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